A brain-derived MeCP2 complex supports a role for MeCP2 in RNA processing.
نویسندگان
چکیده
Mutations in MECP2 (methyl-CpG-binding protein 2) are linked to the severe postnatal neurodevelopmental disorder RTT (Rett syndrome). MeCP2 was originally characterized as a transcriptional repressor that preferentially bound methylated DNA; however, recent results indicate MeCP2 is a multifunctional protein. MeCP2 binding is now associated with certain expressed genes and involved in nuclear organization as well, indicating that its gene regulatory function is context-dependent. In addition, MeCP2 is proposed to regulate mRNA splicing and a mouse model for RTT shows aberrant mRNA splicing. To further understand MeCP2 and potential roles in RTT pathogenesis, we have employed a biochemical approach to identify the MeCP2 protein complexes present in the mammalian brain. We show that MeCP2 exists in at least four biochemically distinct pools in the brain and characterize one novel brain-derived MeCP2 complex that contains the splicing factor Prpf3 (pre-mRNA processing factor 3). MeCP2 directly interacts with Prpf3 in vitro and in vivo and many MECP2 RTT truncations disrupt the MeCP2-Prpf3 complex. In addition, MeCP2 and Prpf3 associate in vivo with mRNAs from genes known to be expressed when their promoters are associated with MeCP2. These results support a role for MeCP2 in mRNA biogenesis and suggest an additional mechanism for RTT pathophysiology.
منابع مشابه
Reciprocal co-regulation of EGR2 and MECP2 is disrupted in Rett syndrome and autism
Mutations in MECP2, encoding methyl-CpG-binding protein 2 (MeCP2), cause the neurodevelopmental disorder Rett syndrome (RTT). Although MECP2 mutations are rare in idiopathic autism, reduced MeCP2 levels are common in autism cortex. MeCP2 is critical for postnatal neuronal maturation and a modulator of activity-dependent genes such as Bdnf (brain-derived neurotropic factor) and JUNB. The activit...
متن کاملpiRNAs Warrant Investigation in Rett Syndrome: An Omics Perspective
Mutations in the MECP2 gene are found in a large proportion of girls with Rett Syndrome. Despite extensive research, the principal role of MeCP2 protein remains elusive. Is MeCP2 a regulator of genes, acting in concert with co-activators and co-repressors, predominantly as an activator of target genes or is it a methyl CpG binding protein acting globally to change the chromatin state and to sup...
متن کاملMeCP2 dysfunction in Rett syndrome and related disorders.
Rett syndrome, a neurodevelopmental disorder caused by mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2), is a leading cause of mental retardation with autistic features in females. MECP2 mutations have also been identified in individuals with a variety of clinical syndromes, including mild learning-disability in females, neonatal encephalopathy in males, and psychiat...
متن کاملMeCP2 phosphorylation in the brain: from transcription to behavior.
Methyl-CpG binding protein 2 (MeCP2), a nuclear protein highly expressed in neurons, was identified because of its ability to bind methylated DNA. In association with the transcriptional corepressor proteins Sin3a and histone deacetylases, it represses gene transcription. However, it has since become clear that MeCP2 is a multifunctional protein involved not only in transcriptional silencing bu...
متن کاملDeletion of Mecp2 in Sim1-Expressing Neurons Reveals a Critical Role for MeCP2 in Feeding Behavior, Aggression, and the Response to Stress
Rett Syndrome (RTT) is an autism spectrum disorder caused by mutations in the X-linked gene encoding methyl-CpG binding protein 2 (MeCP2). In order to map the neuroanatomic origins of the complex neuropsychiatric behaviors observed in patients with RTT and to uncover endogenous functions of MeCP2 in the hypothalamus, we removed Mecp2 from Sim1-expressing neurons in the hypothalamus using Cre-lo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioscience reports
دوره 31 5 شماره
صفحات -
تاریخ انتشار 2011